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ABSTRACT  

The Marine Autonomous Surface Ships (MASS) constitute a novel type of systems, which require 
novel methods for their design and safety assurance. The collision avoidance system is considered 
one of the most critical systems for MASS. This study aims at developing a process for generating 
and selecting ship encounter scenarios to test the collision avoidance system in a virtual environment. 
The proposed process employs sampling techniques for generating encounter scenarios, deterministic 
criteria for identifying the hazardous scenarios, risk metrics estimation for the classification of the 
encounter situations, as well as clustering techniques for further downsizing of the scenarios number. 
This process is applied to a small short-shipping vessel thus demonstrating its applicability. 
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1. INTRODUCTION 

For enhancing the sustainability of the 
maritime industry, novel systems and 
technologies have been developed, including 
marine autonomous  surface ships (MASS) 
(AUTOSHIP, 2019). In these ships, the collision 
avoidance system is considered one of the most 
critical systems (Bolbot et al., 2020). The 
development, validation and verification of safe 
and robust collision avoidance systems is a 
challenging task, which requires the 
identification of scenarios that need to be tested 
either by employing a virtual environment 
(simulator) or during sea trials. 

The navigation of ships is primarily regulated 
by the - International Regulations for Preventing 
Collisions at Sea (COLREGS) (COLREGS, 

1972). However, the COLREGS requirements 
were developed considering manned ships and 
not the MASS. COLREGS do not provide 
quantitative criteria for categorising the MASS 
navigation actions, whilst their implementation 
rely on the crew judgement, so they cannot be 
used to develop testing scenarios for future 
autonomous ships (Woerner et al., 2019). Data 
acquired from the Automatic Identification 
System (AIS) can be used for that purposes (Gao 
and Shi, 2020; Goerlandt et al., 2017; Kulkarni 
et al., 2020; Mou et al., 2010), but it also entails 
a number of limitations(IMO, 2015). Several 
previous studies investigated the development 
of collision avoidance system for MASS, e.g. 
(Brcko et al., 2021; Huang et al., 2020; Huang 
and van Gelder, 2020; Namgung and Kim, 
2021), however, very few studies focused on the 
testing of autonomous ships and the testing 
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scenarios generation (Pedersen et al., 2020; 
Woerner, 2014). 

This study aims at proposing a process to 
develop testing scenarios for collision 
avoidance system of MASS. The developed 
approach integrates methods from different 
research areas, namely statistical sampling, ship 
manoeuvrability studies, big data analytics, and 
software testing techniques. This is elaborated 
in more detail in the next sections. 

The remainder of this paper is structured as 
follows. First a brief presentation of the 
developed process is implemented. Then the 
investigated case parameters are provided. 
Lastly the results and considerations for future 
research are discussed. 

2.  PROCESS DESCRIPTION 

The proposed process consists of five steps as 
illustrated in the flowchart of Error! Reference 
source not found.. The required input includes 
the parameters for the ships and operational 
area, the weather conditions, the size of canals 
or fjords, as well as the sea depth. 

Step 1 employs sampling of the selected 
parameters to develop the encounter situations. 
Whilst a plethora of methods can be employed 
herein, the Sobol sampling technique was 
selected due its ability to offer an effective 
coverage of the sampling space and relative 

results robustness (Bolbot and Theotokatos, 
2021; Burhenne et al., 2011; Kucherenko et al., 
2015; Qian and Mahdi, 2020). Sampling is 
implemented considering the parameters range 
from their minimum to maximum values. 

The hazardous situations are identified using 
a set of deterministic rules in step two. For this 
purpose, a number of geometrical metrics is 
employed, such as the geometric distance 
between the Own Ship (OS) and the kth Target 
Ship (TSk) (��,�), time to the closest point of 
approach between the OS and TSk (�����,�), 
distance at the closest point of approach 
between the OS and TSk (�����,� ) and the 
safety domain around the OS depicted using a 
circle with radius ��,�. The hazardous scenarios 
identification procedure is depicted in the 
pseudocode form provided in Table 1. 

The following criteria are employed: (a) 
�����,� > 0 , to exclude scenarios where the 
closest encounter occurred in the past and the 
vessels are expected to diverge from each other; 
(b) �����,� < �i,1, to identify scenarios where 
the two vessels will come very close to each 
other (TSk in the safety domain of OSk); 
(c) ��,� < �� , where ��  is a set threshold, to 
identify scenarios in which the two vessels are 
in proximity to each other; (d) �����,� < ��, as 
the focus is on potential collision scenarios in 
the near future, depicted using �� as threshold. 
The equations for all the employed metrics are 

Figure 1 Process overview. 
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well-known and can be found in (Namgung and 
Kim, 2021; Pedersen et al., 2020; Woerner, 
2014). The radius ��,�  is calculated as in 
(Namgung and Kim, 2021). The values of �� 
and �� are set to 1 nm and to 10 min, in line with 
the information provided in (Namgung and 
Kim, 2021) and (Rødseth et al., 2020). 

Table 1 Pseudocode used for hazardous 
scenarios identification 

 Algorithm: Hazardous scenarios identification 
1: Procedure: Hazardous scenarios identification 
2: Input: Potential traffic situations generated using 

Sobol sequences in previous step 
3: For i=1:N% for all the sample points 
4: Estimate  

��,� %distance between OS and TSk  

�����,� %time of closest approach 

�����,�  %distance of closest approach 

��,� %estimation of safety domain radius for 
OS 

5 Find min (��,�), i=constant 

6: For (��,�)= min (��,�): max (��,�), i=constant 

7:  If �����,� >0 & �����,� < ��,�  & ��,� < �� 

& �����,� < �� then  
Situation should be considered as hazardous 
Keep the parameters 

8: End for ��,� 

9: End for i 
10: End procedure 

At step 3, the risk metrics and vector for each 
scenario are estimated. The risk vector (��) for 
each encounter scenario is calculated according 
to the following equation: 

�� = [ ������� ������, √�, ℎ�, �]    (1) 

By setting the elements in a vector, an implicit 
assumption is introduced, according to which, 
all the vector elements are equally important. 

The ������  and ������  represent the 
normalised versions of DCPA and TCPA for the 
���  vessel (or shore) based on the selected 
safety domains, and are estimated according to 
the following equations: 

������ =

            �

0, ��  ����� < 0  ��  ����� > �� 
1,   �� ����� < �� 

��

�����
,   for all other cases

    (2) 

������ = 

       �
0, ��  ����� < 0 ��  ����� > ��

��������

��
,   for all other cases

       (3) 

The physical meaning of the equations (2−3) 
is as follows. If the closest point of approach 
with the vessel ��� is in the past or too far away 
in the future, the vessel ��� does not contribute 
to the risk (relevant value 0). Therefore, if 
����� → 0 from positive values of TCPA, as 
we already excluded the scenarios with 
TCPA<0, then the TCPA contributes the most to 
the risk (relevant value 1). For the intermediate 
values, linear interpolation is used. If TSk is in 
the safety domain, then the risk from DCPA 
becomes maximum (relevant value 1). The 
further the DCPA is from the ship, the smaller is 
its contribution to the risk of collision. The 
multiplication between ������  and ������ 
is used to emphasise that the closer an encounter 
is in distance and in time, the higher is the risk 
that is coming from the vessel ���.  

It should be noted that the above risk metrics 
are relevant only when considering ships 
independently from each other. To address 
potential interactions between the vessels, 
another metric, A, which depicts the area in the 
� − �  (speed-angle) space that is not allowed 
for manoeuvres. The metric A is calculated 
using concepts from velocity obstacle 
algorithms (Degre and Lefevre, 1981; Fiorini 
and Shiller, 1998) as following: 

� =
��

� ����
�     (4) 

Where AC is the area in the � − � space that 
is not available for safe navigation, as collision 
with vessels ���  can occur according to the 
holonomic hypothesis. Therefore, AC is defined 
according to the following equation: 
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�� = �(� −

���

���

�) ����� ����   �ℎ��� ���������  

���ℎ ��� ������ ⋂  (� − �) ������      (5) 

The parameter  ℎ� is estimated as follows: 

ℎ� = �

�

�.�� ����
, �� ����� �� withi� �� ����

0, �� �������
 (6) 

where d is the minimum distance between 

�(�)����������⃗  and the safe area. This metric is used to 
depict how effectively the vessel can change 
speed and end up in a safe combination of speed 
and direction values. The normalisation with 
0.25 ����  is employed in line with the 
assumption that a ship cannot instantly change 
its speed to the desired level.  

The last metric of RV is used to depict the 
weather conditions prevailing during 
manoeuvring and is estimated as follows: 

� = �
�� �� ��

��,��� ��,��� ��,���

�
  (7) 

Where ��  is the wave height for the 
considered scenario, �� is the current speed, �� 
is wind speed, and max denotes the maximum 
values of these parameters (��, �� and ��). 

In step 4, the identified hazardous scenarios 
from step 2 are grouped into equivalence classes 
using the risk vector from step 3 with the 
assistance of clustering techniques. For the 
purpose of this study, the mean shift clustering 
is used (Cheng, 1995). This algorithm estimates 
the extent of similarity between every pair of 
data using Gaussian kernels and Euclidean 
distance till the procedure converges according 
to a predefined bandwidth. In Gaussian kernels, 
the bandwidth is equivalent to the standard 
deviation. Code developed in (Finkston, 2021) 
is used for that purpose. 

Once the equivalence classes have been 
identified, the sample closest to the mean RV 
value for each class is used as representative. 

3. INVESTIGATED CASE STUDY AND 
SELECTED PARAMETERS 

This study considered the case study of a 
small cargo vessel (OS) from the AUTOSHIP 
project (AUTOSHIP, 2019), which operating 
outside the coasts of Norway and is interacting 
with a sailing boat (TS1) and a high speed craft 
(TS2). The input parameters for the investigated 
situations are provided in Table 2. The random 
parameters with their ranges are provided in 
Table 3. These 18 parameters are assumed to 
vary from 0 to their maximum values and are 
sampled using the Sobol technique. The test area 
is set to [0 3 nm] x [0 3 nm] in line with 
(Namgung and Kim, 2021). A shore is also 
considered to be present in the study, 
represented by a simple spline line. 

Table 2 Input parameters. 

 Own ship 
SSS Cargo 
ship 

Target ship 
No 1 
(Sailboat) 

Target ship 
No 2 (High 
speed craft) 

Length 74.7 m 6 m 12 m 
Beam 13.6 m 2 m 2.5 m 
Max speed 15 kn 10 kn 40 kn 
Max current 3 m/s 
Max waves 
height 

2 m 

Max wind 
speed 

14 kn 

Table 3 Random parameters. 

Random parameters Range 
Fish feeding vessel speed [0 max] 
Fish feeding vessel speed direction [0 2π] rad 
Fish feeding vessel location [0 3 nm] x [0 3 nm] 
Sail boat speed [0 max] 
Sail boat speed direction [0 2π] rad 
Sail boat location [0 3 nm] x [0 3 nm] 
High speed craft speed [0 max] 
High speed craft direction [0 2π] rad 
High speed craft location [0 3 nm] x [0 3 nm] 
Current speed [0 max] 
Current direction [0 2π] rad 
Waves height [0 max] 
Waves direction [0 2π] rad 
Wind speed [0 max] 
Wind direction [0 2π] rad 
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4. RESULTS AND DISCUSSION 

The selected scenarios for N=10000 (number 
of Sobol samples) and b=0.5 (selected 
bandwidth in the clustering) are presented for 
each of the class/cluster shown in Figure 2.  As 
it can be observed, the selected scenarios depict 
the following traffic conditions in proximity and 
away from the shore: (a) collision between OS 
and sailboat; (b) collision between OS and high 
speed craft; (c) collision between OS and both 
the vessels.  

 

Figure 2 Representatives for each zone 
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The main advantage of the presented process 
is that it follows a deductive and not inductive 
thinking, compared to the traffic situation 
generated by AIS data. It starts by considering 
the complete set of the potential encounter 
conditions and progresses to more specific 
scenarios. Thus, it is more robust than inferring 
the potential encounter conditions based on the 
AIS data, as the scenarios generation proceeds 
from specific scenarios that already occurred in 
the past. This will contribute to the identification 
and testing of scenarios that have not been 
encountered before, but might occur in the 
future, belonging to the ‘known unknown’ 
region of Johari window(Luft and Ingham, 
1961). The consideration of these type of 
scenarios during testing will contribute to the 
greater safety of collision avoidance system. 

Another advantage of the developed process 
is that it can generate data for the vessels, for 
which AIS equipment is not required and 
therefore, no AIS data exists, e.g. sailboats and 
leisure high speed crafts. This is important, as 
these types of vessels constitute an considerable 
source of hazards for autonomous ships. 

The critical items to be controlled in the 
analysis are the selected safety thresholds, such 
as ��, ��  values and the safety domains around 
the vessel, as they influence the calculation of 
relevant risk metrics and therefore, the clusters. 
In the same manner, the selected risk metrics 
also influence the defined equivalence zones 
and clusters. When the risk vector varies, then 
the clustering results and the selected scenarios 
vary as well. A challenge is that currently there 
is a plethora of approaches for defining the risk 
metrics and safety domains without a common 
agreement or standard. Standardisation in this 
area is needed to define the COLREGS 
requirements for the autonomous ships as well 
as to promote the safe use of autonomous 
technology. 

5. CONCLUSIONS 

In this study, a process to develop 
encountering scenarios for testing the 

autonomous collision avoidance system of 
MASS was proposed and implemented for the 
case study of the SSS next generation 
autonomous ship of the AUTOSHIP project. 
The results demonstrated that this approach 
constitute an effective tool for identifying 
encounter conditions and replacing/substituting 
the AIS data. 

Future research could focus on the selection 
of the appropriate safety domain, update the risk 
metrics as well as on the fundamental questions 
related to coverage scenarios and to the 
clustering algorithm convergence. 
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