Supplementing Fault Trees calculations with neural networks
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The use of artificial intelligence algorithms is rapidly gaining ground in engineering applications, including safety engineering. In this
paper, we investigate the possibility of using neural networks to supplement fault trees in the safety analysis for the estimation of reliability
and importance metrics. For this aim, we employ data from an existing fault tree that models cruise ships blackouts to train a neural
network that uses base-event probabilities as input and outputs the estimated top-event probability/frequency. This is done to reduce
computational time, as the fault tree model has an extensive number of basic events and is thus computationally demanding. The
information that is used as input to the Fault Tree is randomly sampled from a Sobol sequence and is used to estimate the top event
probability. The resulting data cloud that corresponds to the faut tree’s input-output pairs, is used to train the neural network. The two
models, i.e. the probabilistic and the neural network model, are compared to each in other in terms of accuracy and computational cost
correlated with the number of sampling points that is used. The Fault Tree is developed in Matlab/Simulink and the neural network in
Python. For case where the Neural Network is trained using 10,000 points, a 350 times decrease in computational cost is observed
compared to the fault tree model, while the mean absolute percentage error (MAPE) remains at under 15%. Based on the results,
recommendations for the application and future improvement of the artificial intelligent algorithms in the specific context are made.
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the CPSs. Therefore, there is an immediate need to consider
1. Introduction ways to overcome this problem.

The development of mathematics have equipped the safety
engineers with new tools that can be used for ensuring the
safety of CPSs such as Artificial Intelligence algorithms,
Machine Learning techniques, and so on (Hegde and
Rokseth 2020, Hughes, Van Gulijk, and El Rashidy 2019,
Schwarz et al. 2020). These new mathematical tools have
demonstrated good properties with respective to calculation
accuracy as well as speed performance, provided they can
have adequate data. Therefore, the aim of this paper is to
investigate the potential use of Machine Learning
techniques for supplementing the calculations implemented
during safety analysis. For the sake of the analysis a Diesel-
Electric Propulsion system and relevant developed Fault
Tree is being considered.

We live in a world where exceedingly complex systems are
being constantly developed. Cyber-physical systems
(CPSs) constitute an example of such complex systems,
effectively integrating the cyber with the physical part
(Bolbot et al. 2019). The safety of CPSs is ensured using a
number of approaches such as safety analysis techniques,
verification and testing techniques, real-time monitoring
systems, operational procedures, etc (Bolbot et al. 2019).

During the safety analysis and real-time safety monitoring,
it is important to estimate safety metrics for the CPSs to
identify the critical components and suggest the relevant
safety control actions (Papadopoulos and McDermid 2001).
Under ideal conditions, the CPSs safety analysis should be
completed in a very short time to allow swift safety
reconfiguration during real-time, e.g. change of course, or
reconfiguration to another component and smooth design
decisions. However, the inherent complexity of the CPSs
introduces computational challenges for the estimation of
the safety metrics (Bolbot et al. 2019, Pereira and Thomas
2020). This can constitute a barrier to the wider adoption of

The paper is organised as follows. In the next section the
followed methodology is elaborated. Then the information
about the input and the investigated system is provided.
After that, the results of substituting the Fault Tree are being
presented and discussed. Finally, the main findings of the
study are being summarised in the conclusion section.
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2. Methodology

The overview of the methodology

The overview of the followed methodology is provided in
Fig. 1. For the analysis, a Diesel-Electric Propulsion (DEP)
system and its frequency of blackout is being considered.
An already developed Fault Tree of blackout for Diesel-
Electric Propulsion system is being used for generation of
the sampled measures during step 1. Then the sampled
estimates are being used to develop a Neural Network
metamodel of the fault tree in step 2. This procedure is
repeated using different numbers of samples. Once the
results are assembled, they are analysed and relevant
conclusions are being made regarding the methodology and
relevant future steps.

Input: Criginal
safety model

Step 1: FT sampling

Step 3: Sensitivity
analysis using
different sample
number

Step 2: NN
development

o
=

Fig. 1 Methodology overview.

Input description

For the methodology, a safety model of a system with its
basic events is required. It can be a Fault Tree (FT), a
Bayesian Network (ISO 2009) or Boolean-logic Driven
Markovian processes (Bouissou and Bon 2003), or any
other complex safety model. In the present study, the Fault
Tree has been employed for predicting the probability of the
Diesel-Electric propulsion system blackout. This is briefly
described in Section 3 .

Step 1: FT Sampling

During the first Step, the data points which are required for
the development of the Neural Networks are generated. A
plethora of methods could be employed herein for the
generation of the datasets, such as random sampling
(Metropolis et al. 1953), Latin hypercube sampling
(McKay, Beckman, and Conover 1979), or Sobol sampling

(Sobol' 1967). The preference is given to Sobol sampling,
as this type of sampling has demonstrated some good results
in problems of a similar nature (Burhenne, Jacob, and Henze
2011, Kucherenko, Albrecht, and Saltelli 2015, Qian and
Mahdi 2020, Bolbot and Theotokatos 2021).

Hence, the failure rates A which are used as input to the FT
are being sampled according to the following formula
eq.(1):

Ay = 1073756 eq.(1)

Where s; ; is Sobol sample i for component j. Since s;;
varies uniformly between 0 and 1, the 4;, follows log
uniform distribution in the range between 102 per hour and
107 per hour. The generated A; j are used as input to the
FT and the frequency of blackout is estimated as output. The
inputs (4; ;) and output (blackout frequency) are used then
in the next section for the development of Neural Networks.

Step 2: NN Development

Artificial Neural Networks (ANN) are computing systems
that are based on the same working principles as biological
nervous systems. They are based on an interconnected
group of connected units (neurons) where each connection
between these units transmits a signal from one to another,
as long as the linear combination of the inputs exceeds some
threshold (Russell and Norvig 2002). The receiving unit can
further process the signal and consequently pass it on to the
next unit. In the case of regression, the output layer of the
NN, i.e. its last layer, outputs the value predicted by the
network given its specific inputs (Fig. 2).

Key parameters that affect the computation needs and the
performance of ANNSs are the number of hidden layers and
the number of neurons per hidden layers. Other parameters
include the, per layer, dropout rate and the learning rate.

Dropout is applied in ANNs with more than one hidden
layers to reduce overfitting of models and improve their
robustness. This is done by randomly dropping neurons
during training based on a probability dictated by the
dropout rate. The ANN of Fig. 2 is depicted in Fig. 3,
including the effects of dropout.

The tuning is applied through a variation of the HyperBand
algorithm (Li et al. 2017), as provided through the
TensorFlow/Keras platform. Key parameters include the
maximum number of epochs to train the model and the
maximum number of full algorithm iterations.

In this case, the ANN input is taken from step 1 of the
methodology and the search space for optimal
hyperparameters included the information presented in
Table /.
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Fig. 3 Typical 3 hidden layer ANN architecture with dropout
applied. Dropout rate is 40% after the first hidden layer, 60% after
the second hidden layer, and 0% after the third hidden layer.

Table 1 The hyperparameters information.

Hidden layers 4-8

Nodes per hidden layer 40 - 157
Dropout rate per layer 0-0.9
Learning rate 1E-4 - 1E-2

Step 3: Sensitivity analysis using different sample
numbers

The FT sampling (step 1) and ANN development (step 2)
are repeated for 100, 1000, 10000 totally samples of failure
rates. The estimations of the blackout frequency according
to the Fault Tree and Neural networks are then compared
using a number of metrics such as Mean Absolute
Percentage Error (MAPE), Root Mean Squared Error
(RMSE) and Mean Squared Logarithmic Error (MSLE).
The formulas of these error metrics are presented in eq. (2)
to (4).

MAPE(y,9) = - ? 1 eq.(2)

fy‘ff|- 100%

RMSE(Y Y) - _El 1()’1 yi)z eq.(3)

32
MSLE(y,9) = - %I, (In(1 + y) = In(1 + ) "eq.(4)
Conclusions and findings of the study are derived based on
the generated observations.

3. Selected case study and original Fault Tree

Diesel-Electric Propulsion (DEP) systems have been widely
used for propulsion and power generation of a number of
ships including LNG carriers, icebreakers, drilling units,
naval vessels and cruise ships (Hansen and Wendt 2015).
The DEP can be viewed as a complex system consisting of
a number of subsystems including physical components,
hardware and software, which interact with each other to
ensure the continuous power generation and distribution,
covering the ship power demand (Adnanes 2003, Rokseth,
Utne, and Vinnem 2017) and satisfying the definition of
CPSs.

In this analysis, a DEP of cruise ship vessel as presented in
(Bolbot, Trivyza, et al. 2020, Bolbot et al. 2021) has been
employed. The DEP system includes 6 Diesel Generators
(DGs), 3 Azipod propulsors, 3 Switchboards, 4 Bow
Thrusters, 2 separate engine rooms as shown in Fig. 4. More
details on the investigated system can be found in (Bolbot,
Trivyza, et al. 2020, Bolbot et al. 2021).

The system blackout frequency is estimated using
Combinatory Approach to Safety Analysis (CASA). The
CASA involves integration of System-Theoretic Process
Analysis (STPA), Event Sequence Identification and Fault
Tree Analysis for the development of an enhanced Fault
Tree. More details on CASA can be found in (Bolbot,
Theotokatos, et al. 2020, Bolbot et al. 2021). CASA
employs a set of refinement rules and probabilistic calculus
for the estimation of top event failure rate.

The developed Fault Tree used 142 failure rates as input to
the analysis alongside other design and failure parameters.
The Fault Tree is too large to be presented in a paper format
and required approximately 7 seconds on a conventional
desktop computer to provide a single estimation of blackout
failure rate in the MATLAB/Simulink environment. The
MATLAB/Simulink environment has been used, as it the
necessary flexibility for the development of the Fault Tree
and the research activities. This computational time is
adequate for estimating only a single metric, however, the
implementation of criticality analysis would require an
additional 142x7=17 min. More details on the developed
Fault Tree can be found in (Bolbot, Theotokatos, et al. 2020,
Bolbot et al. 2021).



Proceedings of the 31st European Safety and Reliability Conference

AFT SWITCHBOARD/ENGINE ROOM

FORWARD SWITCHBOARD/ENGINE ROOM

| Fuel system 2 ‘E

]

| Water cooling sysiem 2 2

=]

ubrica ng ubricating U £

system 6 system 5 system 2

® @ 4
| Switchboard 3

= | Fuel system 1 I
5

E_ | Water cooling system 1 ‘
=]

-E Lu rical ng Lu ricating Lumcaung
2 system 3 system 2 system 1
=

TEY

| Swwmhhnarﬂ 2]

1) 1
58008 00888
D/G: D_leﬁel G_e_ne_ramr @

AC: Air conditioning motor
BT: Bow thruster motor Thyristor bridge

HL: Holel load [£] Frequency convertor
ER: Auxiliaries load

-}
PM: Propulsion motors load e Transiormer

Fig. 4 Investigated system layout

4. Results and discussion

The results of the analysis for the specific case study are
presented in Table 2 and in Fig. 5 to 8. As previously
mentioned, three cases were evaluated, that of 100, 1000
and 10,000 data points. With 100 points used for training
the ANN model accuracy is not sufficient for the needs of
the problem, with MAPE reaching almost 1500%. The use
of 1000 points, leads to significant improvement in
accuracy (MAPE=35%), but only with 10000 it can be
considered as tolerable (15%).

The ANN struggles to capture more accurately the FT with
more data points added, as the spread of value according to
the FT is quite large, extending over a region where the
smallest and the largest value have difference of 6 orders of
magnitude (Fig. 7 and Figure 8). As the considered region
is extended, more datapoints are considered. Even if the
outliers are excluded, then the overall accuracy does not
change significantly (Figure 8). Yet, it is highly unlikely
that values of failure rate resulting in outlier blackout
frequency of 0.5 or 100 per hour will ever be encountered
in design or during operation.

As it can be observed in Table 2, as the number of data
points were considered, the more time was required to
develop the ANN model. Still, in all cases, the estimations
for a single blackout frequency were obtained at a negligible
time cost, of about 2ms, far less than 7 seconds required in
the initial model on a typical personal computer. Therefore,
it can be argued that the use of ANN allowed us to develop
a model of sufficient accuracy, but demanding far less
computation resources.

A limitation of the current study is that we considered only
the variation in the failure rates that are being used as input.
The potential changes in FT structures and sensitivity to

them were not examined. It is anticipated though that during
the Fault Tree changes in response to changes in the system,
the relevance of the developed ANN will be dependent on
the importance of the imposed changes. If the changes do
not influence the critical components, then the FT can be
reused, if not, it needs to be updated. Potentially, this issue
can be faced by training a set of FTs which correspond to
specific system configurations.

Whilst the finally achieved accuracy is deemed as tolerable,
further improvements are deemed as necessary for the ANN
to achieve accuracy required for an application in a safety
critical system. A potential future research could focus on
identification of clusters of input values to the ANN which
provide the estimate according to the set target accuracy. In
this way, the use of hybrid computational methods would be
pursued, where if the input value belongs to the cluster of
input values resulting in accurate ANN estimation, then
ANN is used. For values outside these clusters, then the
actual Fault Tree could be employed. This will inevitably
lead to higher computational costs, but still would result in
computation cost reduction. An alternative could be a set of
ANN, each of which achieves an accurate estimate of the
values in the pre-set clusters. All these are constitue
suggestion for future research.

Table 2 The estimation of error metrics with varying the sample
size.

100 points | 1,000 points | 10,000 points
model model model
Training 77 seconds = | 261 seconds | 3443 seconds
time (10 | Imin ~ 4min ~1 hour
runs,
averaged)
RMSE 0.097 0.030 0.017
MAPE 1448.6% 35.26% 14.55%
MSLE 0.00748 0.00068 0.00015
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Fig. 5 Results for 100 data points (90% training - 10% testing)
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Fig. 6 Results for 1,000 data points (90% training — 10% testing
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Fig. 7 Results for 10,000 data points (90% training — 10% testing)
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Fig. 8 Results for 10,000 data points (90% training — 10% testing)
with polishing outliers

5. Conclusions

In this paper a methodology for developing an ANN in the
place of a safety model, in specific a Fault Tree, has been
suggested. The methodology was applied to a Fault Tree of
blackout in a DEP system.

The main findings of the study are as follows

e The developed ANN demonstrated tolerable accuracy
when 10,000 training points were involved for 142
failure rates where the minimum and maximum value
had a difference of six orders of magnitude.

e The use of ANN allowed to reduce significantly the
computational cost of the initial Fault Tree.

e  Further ways to ensure better accuracy of the ANN
need to be investigated.

A future research could investigate the robustness of the
developed ANN model in response to system changes and
on how to further improve the model accuracy.
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