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Artificial Intelligence (AI) is being promoted as an important contributor to ensuring the safety of autonomous
ships. However, utilizing AI technologies to enhance safety may be problematic. For instance, AI is only capable of
performing well in situations that it has been trained on, or otherwise programmed to handle. Quantifying the true
performance of such technologies is, therefore, difficult. This raises the question if these technologies can be applied
on larger ships that need approval and safety certification. The issue gains further complexity when introduced
as an element in remote control centres. This paper presents an overview of the most relevant applications of AI
for autonomous ships, as well as their limitations in the context of approval. It is found that approval processes
may be eased by restricting the operational envelope of such systems, as well as leveraging recent developments in
explainable and trustworthy AI. If leveraged properly, AI models can be rendered self-aware of their limitations, and
applied only in low risk situations, reducing the workload of human operators. In high risk situations, e.g. high AI
model uncertainty or complex navigational situations, a timely and effective handover to a human operator should
take place. In this manner, AI-based systems need not be capable of handling all possible situations, but rather be
capable of identifying their limitations and alerting human operators to situations that they are incapable of handling
with an acceptable level of risk.
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1. Introduction

The field of autonomous ships is developing
rapidly. Norway is arguably at the forefront of
much of the development in autonomous ships,
with test areas outside Trondheim, Horten, Hauge-
sund, and Ålesund. Furthermore, Massterly, the
world’s first operator of autonomous vessels, will
be operating vessels for Yara and ASKO, initially
with crew onboard, but with increased levels of
automation introduced over the coming years, un-
til 2024 when these ships are planned to be partly

autonomous and operrated with no crew onboard.
Thus, there is an urgent need to establish practi-
cally useful approval procedures.
Regulatory bodies are currently attempting to

establish guidelines for approval of autonomous
ships. Most approaches are largely based on
the IMO circular MSC.1/Circ.1455 (IMO, 2013)
e.g. Norwegian Maritime Authority (2020) DNV
(2021a) and BV (2019). These procedures are
generally based on a systematic risk assessments
of the planned operations and the equipment
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in use, to ensure a safety level equivalent to
that on conventional ships. However, autonomous
ships will likely utilize Artificial Intelligence (AI)-
based systems, an element that the guidelines do
not address in detail. DNV (2021b) addresses
assurance of data-driven models, but lacks the
bridge to approval of AI-based systems in the con-
text of autonomous shipping. Hence, such systems
will require verification of system performance
as the guidelines currently stand, resulting in a
number of challenges.
AI has a highly variable status in autonomous

systems research. Some authors claim that a sys-
tem cannot be fully autonomous unless it includes
technology that allows the system to learn while
acting. For example,Williams and Scharre (2015)
refer to level 4 autonomy defined by a NATO’s
Industrial Advisory Group (NIAG) group as “au-
tonomous learning system with the ability to mod-
ify rule-defining behaviors”. This would imply
using AI to, e.g. improve the system’s observation
and decision-making capabilities. On the other
hand, this use of AI would change the system’s
behavior over time, which means that the sys-
tem after some time of operation would not be
the same system as when it started. This will be
very problematic for systems that require approval
or certification to operate, e.g. ships. Approval
processes in current guidelines aim to verify that
the system capabilities, when the system is put
into operation, are sufficiently well implemented
to handle all relevant situations that the system
will encounter and that there are no aspects of the
system’s construction that can cause significant
safety risks. If the system changes behavior over
time, it will be a challenge to prove that this
does not cause new and possibly unknown safety
risks (Koopman and Wagner, 2017). Currently,
our opinion is that including learning as part of
safety certified autonomous vehicle’s capabilities
is not realistic.
This does not preclude using AI in system

components. In the context of autonomous ships
there are two particular areas where the use of AI
is interesting: 1) In detection and classification,
most commonly in various forms of environment
perception such as scenery and objects, but also

for condition monitoring of equipment, events and
states; 2) In prediction of future situations and in
planning suitable actions, such as collision avoid-
ance. The use of AI in both these areas should
be feasible given that the functionality of the AI
system can be verified for the intended use. This
paper aims to provide an overview of AI for
autonomous ships, as well as the challenges in
the context of approval processes. Furthermore,
possible ways to ameliorate approval process are
presented, as a step towards aiding future regula-
tory guidelines.

2. What is AI for autonomous ships?

2.1. What is AI?

AI makes use of a number of different tech-
nologies and this paper will not try to give full
classification of these. Since the 1990s, statistical
methods and in particular various forms of artifi-
cial neural networks (ANN) and machine learning
(ML) have re-emerged as the most important area
of AI applications. Machine learning differs from
“Good Old-Fashioned AI” (GOFAI) (Haugeland,
1989), e.g. symbolic and fuzzy logic, in that its
response to stimuli is not any more explainable by
an explicitly specified computer code or database.
Most ANNs that are used today are deep neu-

ral networks, i.e. they contain several “hidden”
layers in addition to the input and output lay-
ers. ML techniques are typically categorized into
algorithms for supervised learning, unsupervised
learning and reinforcement learning (Al Ridhawi
et al., 2020). Many of these methods are based on
the training of an ANNwith data, whereby the net-
work establishes an internal weighting of different
characteristic factors of the input data sets, e.g.,
to detect certain patterns or to give suggestions
for suitable actions. ANNs provides state-of-the-
art performance within computer vision, allowing
for the detection and classification of objects e.g.
ships. Furthermore, it can be used for regression
tasks by mapping non-linear relationships that can
be used for predictions, e.g. the future path of a
vessel.
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2.2. Where in the ship can AI be used?

An autonomous ship system consists of many
components located both on the ship and remotely
from the ship, such as in a Remote Control Center
(RCC). AI can be used in many of these com-
ponents, but in this paper, we will discuss two
specific applications. 1) The Situation Awareness
System (SAS), i.e. the sub-system that acquires
data about the ship and its surroundings and builds
a computer model of objects that can have an
impact on the operation of the autonomous ship
(i.e. detection and classification); and 2) The Au-
tonomous Navigation System (ANS), i.e. the sys-
tem that controls the ship’s movements to ensure a
safe passage, including track and speed control as
well as collision avoidance (i.e. evaluating future
situations and planning suitable actions).
Both the SAS and ANS functions have been

extensively researched, see e.g. Thombre et al.
(2020) and Zhang et al. (2021). However, there
is a fundamental difference between these two
functions. A successful SAS is in principle only
dependent on enough sensor data and sufficiently
good algorithms to provide an arbitrary high qual-
ity environmental model. ANS, on the other hand,
may ultimately have to make decisions based on
what a human officer on the encountered ship will
or will not do.
The Convention on the International Regula-

tions for Preventing Collisions at Sea from IMO
(1972), or COLREGs for short, is the interna-
tionally agreed on framework for how ships shall
behave to avoid collisions. This includes the use of
light and sound signals as well as guidelines for
manoeuvres during encounters between ships in
various situations and visibility conditions. How-
ever, these guidelines are generally only valid for
two ships at a time and also refers to the use of
”good seamanship” in conjunction with collision
avoidance. The actual actions taken in a given situ-
ation will therefore to a significant degree depend
on the preferences of the bridge personnel. Thus,
it is highly unlikely that the automation system,
with or without AI, can handle all situations the
ship may encounter, in particular situations where
more than two ships meet or when another ship

behaves erratically. Without some changes in the
COLREGs, this is in principle not possible to do
with 100% confidence (Rødseth et al., 2021).
The most common current assumption is that

the autonomous ship will need a human operator
to intervene in such situations. The automation
system will, however, be able to handle the ship
most of the time and one cannot rely on the op-
erator to stay sufficiently alert during automatic
operation to rapidly understand when it is neces-
sary to take over control. One will need an alert
from the automation system to the operator. This
requires that the automation system and its AI
can determine when its limits are approaching and
alert the operator in time for safe handover. This
can probably best be implemented by a rule-based
system. AI is likely most suitable for use in SAS,
where the most relevant applications of AI are
object detection and classification, as the domain
of these functions is fairly constrained.

3. Requirements to AI in SAS

The basic and most important requirement for the
SAS in terms of collision avoidance, is that it
can detect all objects with potential of causing
a collision. Collision avoidance also depends on
motion prediction for both the own ship and the
ship (or object) which one may collide with, i.e.
the target ship. That is, the future trajectory of own
ship and the target ship must be predicted. Several
methods for trajectory prediction are discussed in
Huang et al. (2020). The SAS must, therefore,
estimate the position, heading, and speed of the
target ship as well as own ship. Such predictions
will, however, be associated with significant un-
certainty, as humans may not adhere to expected
behavior in all cases.
The accuracy of the object detection, the state

estimation (object speed, heading, etc.), and cate-
gorisation must always be estimated by the SAS
such that the ANS can decide if the data is reliable
enough for collision avoidance. An important part
of this is continuous sensor integrity checking and
verification. When the sensed environment cannot
be determined with sufficient accuracy, the ANS
must call upon the RCC for support. However,
calling upon RCC should be minimized. This
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means that the SAS must be designed to function
sufficiently well in all conditions the autonomous
ship is expected to operate in.

4. Limitations of AI in SAS

The question on how to assess and approve AI
and ML applications used on ships should not
only target the specific algorithm or model, but
instead encompass the complete model manage-
ment of the data processing pipelines that are used
(Schelter et al., 2018). Table 1 illustrates a set of
generic steps associated with such a pipeline along
with challenges that can be attributed to each step
(Elshawi et al., 2019). The challenges that are
listed are either generic (G) for ML and AI ap-
plications or application specific (A), i.e. SAS for
object detection and classification, or autonomous
ships.

Table 1. Data processing pipeline and the steps in devel-
oping ML solutions with reference to challenges listed in
Table 2.

No. Description G A

1 Data collection, 1,2,3 4,5
cleansing,
transformation,
exploration

2 Choice of algorithm 6 7
3 (Re)Training, 8,9,10

validation, test
4 Evaluation of results 11,12
5 Gap analysis 13,14
6 Deploy/replace, 15,16,17 17

versioning

The challenges are listed in Table 2 (Schelter
et al., 2018; Feng et al., 2020; Moosbauer et al.,
2019; Shin et al., 2020; Gupta et al., 2009; Ravin-
dran et al., 2020). They are, furthermore, sorted
into categories in Table 1, as items that developers
(e.g. original equipment manufacturers) must be
aware of to ensure desired model performance,
that approval authorities (e.g. classification soci-
eties) must be aware of to be able to approve the
use of a model, and finally that users (e.g. crew or
RCC operators) need to be aware of to understand

Table 2. Challenges associated with ML/AI applications
that use ANN/DNN for SAS to detect and classify objects.

No. Description

1 Skewed datasets/categories intended for
classification models (many observations
of few categories vs. few observations of
many categories)

2 Data quality vs. data diversity
3 Labelling errors
4 Lack of public maritime benchmark datasets
5 No definition of common maritime

ontology for object classification
6 Conventional classification methods

assume independent and identical
distribution (I.I.D. assumption)

7 Fusing strategy for multi-object detection
8 Accuracy improvements slows down

in highly tuned ML models
9 Comparison of different models

requires that the same data set is used
for training, validation and test

10 Overfit on training and validation sets
due to extensive experiments

11 Proper split of training, validation and
test sets (I.I.D. assumption does not hold in
real world applications)

12 Standardized metrics is needed for
comparison of different models

13 Backtracking, i.e. to understand changes in
model performance e.g. after re-training

14 Standardized metrics is needed to compare
the performance of one or several ML model

15 Determine release candidates (old vs. new
models, prediction times etc.)

16 Backwards compatibility of models
17 Determine and detect if and when retraining is

needed

the constraints and limitations associated with the
implementation and use of the model on an au-
tonomous ship. The different stakeholders will
have different involvement in the data processing
pipeline, but the expectations to each stakeholder
and each step are not defined as the regulatory
frameworks for ships and inland waterways ves-
sels do not pose explicit requirements to the use of
AI and ML on autonomous ships, and furthermore
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how to manage the model throughout the ship’s
life cycle.
This overview highlights two ML aspects of

particular relevance for approvability in the con-
text of autonomous vessels: firstly, that opera-
tional model performance is highly dependent
on the available training data and training pro-
cess, and, secondly, that performance is bound
to change over its life cycle. The first point is
important since it implies that the true operational
performance and behavior of a model might be
difficult to assess through a predefined set of test
cases, or the like, while the second point raises
the question of how a potential approval should
be handled in the light of changes in model per-
formance over time.
Hence, approval of systems involving ML-

models diverges from general aspects of approv-
ablility related to more regular equipment where
behavior is guaranteed through the approval pro-
cess. Within the domain of training data that
the ML-model is trained on, performance can
be quantified. Approval processes can implement
standardized requirements to ML-models that can
optimize performance within this domain, but
many of the underlying challenges of utilizing
ML-models will persist. By minimizing the effect
of the challenges presented in this section, models
will have a higher degree of operability. However,
there is a large degree of uncertainty related to sit-
uations in which the model has limited experience.
Guaranteeing the performance of ML-models

in all possible situations is, therefore, infeasible.
Requirements could rather be set with respect to
awareness of model limitations, as well as im-
proved human-machine collaboration. Therefore,
it is suggested in the next sections to leverage hu-
mans in conjunction with explainable AI to handle
situations in which the relevant ML-models per-
form poorly.

5. Overcoming Limitations

5.1. Human-AI Interaction

The RCC is a central aspect of future autonomous
ship systems. Hence, humans will provide a cen-
tral component of the reliability of the system,
as situations the ship automation is incapable of

handling will be dealt with by human opera-
tors. AI is envisioned to have a central role in
RCCs, with the aim of reducing the workload
for operators responsible for monitoring and con-
trolling autonomous vessels, as well as improve
their decision-making capabilities. In general, AI
should aid the human operator in achieving high
level situational awareness. However, it has been
shown that increased levels of automation can
have negative effects e.g. decision biasing (Sarter
and Schroeder, 2001). Furthermore, complex sys-
tems that are hard to understand can lead to out-
of-the-loop performance, as operators are unable
to identify the problem (Endsley, 2017).
Rødseth et al. (2022) discussed the use of an

operational envelope as a tool to aid the human-
machine interface in the context of autonomous
ships. In cases where the risk is deemed too high
for the automation to handle, a hand-over from the
automation to the human operator must take place,
or fail to safe for a minimum risk condition. The
automation must, therefore, have a high degree of
reliability within a constrained domain, as well
as the ability to evaluate the risk associated with
various situations. In situations where the risk
is above a given threshold, the operator will be
involved. High risk situations can, for instance,
involve ship encounter situations or high traffic
congestion. Furthermore, this can be extended to
situations with high ML-model uncertainty, i.e.
situations in which the ML-models may perform
poorly. The operational envelope will define what
the ship automation is expected to handle in this
context.
Due to the close integration of human opera-

tors with AI-based systems, research has emerged
on the topic of human-AI teaming (National
Academies of Sciences and Medicine, 2022).
National Academies of Sciences and Medicine
(2022) identified, among other things, that ex-
plainable AI would play an essential role in
human-AI teaming.
Endsley (2017) outlined transparency, under-

standability and predictability of the automation
system as important factors in providing automa-
tion trust. ML-models are often referred to as
”black-boxes”, and are inherently lacking in many
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of these aspects. However, there has recently been
an increased focus on trustworthy and explainable
AI as an aid to humans interacting with AI-based
systems. Through trustworthy AI, the user can be
informed as to the limitations of the model, e.g. in
cases of high model uncertainty. In such cases, the
AI model is not capable of handling the situation,
and human intervention is required. Explainable
AI on the other hand, strives to provide the user
with the reasoning behind a model prediction. If
leveraged properly, such methods can assist RCC
operators in overcoming many of the limitations
of using AI in autonomous ships. A system in-
volving human operators that can handle high risk
situations, e.g. high AI-model uncertainty, should
ease the approvability of AI-based autonomous
ship systems.

5.2. Explainable AI

As mentioned, ML-models are often viewed as
”black boxes”. In this sense, the underlying
causality associated with the prediction model is
unknown, i.e. it is a ”black box”, within which the
user has little insight. This had led to scepticism
among end-users of AI-based systems, as well
as degradation of situational awareness. Provid-
ing confidence in such models in safety-critical
applications e.g. ship navigation can, therefore,
be challenging. Models must also be transparent
and understandable enough to enhance operator
situational awareness.
In 2017, the Defense Advanced Research

Projects Agency (DARPA) launched an explain-
able AI program to create more understandable AI
systems via explanations catered to humans (Gun-
ning and Aha, 2019). DARPA defines explainable
AI as ”AI systems that explain their rationale to
a human user, characterize their strengths and
weaknesses, and convey an understanding of how
they will behave in the future” (Gunning and Aha,
2019). In this study, we decompose this definition
into components of trustworthy and explainable
AI, where explainable AI focuses on explaining
why a decision was made. Trustworthy AI, on
the other hand, deals with characterizing model
strengths and weaknesses.
One of the most relevant application areas of AI

is supporting the SAS, specifically with respect to
object detection and classification. These models
leverage deep convolutional neural networks, that
are too complex to directly infer the casualty,
and hence the explanation of a model predic-
tion. One method to explain the reasoning behind
deep ANN predictions is guided backpropagation
(Springenberg et al., 2015). By evaluating the out-
put of the network, the prediction is propagated
backwards through the network to the input layer.
This will yield a weighting over the input image
indicating what the network has focused on. The
user can then evaluate if the model is behaving in a
manner based on causality, or if it rather is basing
its prediction on spurious correlations. Over time,
operators can gain confidence in model predic-
tions. In many cases, however, the explanations
may be too complex for human operators. Other
related methods e.g. gradient-weighted class ac-
tivation mapping (Grad-CAM) (Selvaraju et al.,
2017) allow for the visualization of a heat map to
illustrate what the model is focusing on, in a more
interpretable manner.
However, methods must be developed to re-

late model explanations to the operator’s domain
knowledge, i.e. increase their interpretability. If
implemented incorrectly, the utilization of such
techniques may compound the problem by pro-
viding additional information to the operator that
they do not understand. Explainable AI techniques
must, therefore, be designed to match the domain
needs of the operator.

5.3. Trustworthy AI

Trustworthy AI attempts to evaluate model un-
certainty. To aid in overcoming the challenges of
approving AI-based models for use in autonomous
shipping, an uncertainty-based system could be
implemented. System approval would then be
based on the ability of a human operator to take
control when model uncertainty is high. As such,
system approval would not require high model
accuracy in all possible situations, but rather focus
on their ability to predict their limitations. In most
cases, i.e. where the input to the algorithm lies
close to the mean of the training data, model
uncertainty will be low. However, ML models
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are prone to inaccuracies when the input to the
algorithm lies far from the distribution of the data
upon which it was trained, or in regions of high
variance in the training data. In such cases, model
uncertainty will be high.
While the uncertainty of statistical models can

often be calculated explicitly, ANN model un-
certainty is not as easy to quantify. Nonethe-
less, research has emerged in recent years that
attempts to address this issue (Abdar et al., 2021).
Model uncertainty is generally considered to be
comprised of aleatoric and epistemic uncertainty
(Hüllermeier andWaegeman, 2021). Aleatoric un-
certainty is due to the inherent randomness in the
data set, i.e. noise in the data. Such uncertainty
is, therefore, irreducible. Epistemic uncertainty,
on the other hand, relates to uncertainty in model
parameters due to a lack of information. It is,
therefore, considered to be reducible by increas-
ing the amount of training data. In the case of
object classification in ship navigation, this may
be challenging due to limited available data sets
compared to those commonly used for computer
vision. A high degree of epistemic uncertainty
indicates, therefore, that the model does not have
sufficient training data to conduct a reliable pre-
diction. Alerting an operator to such situations
may increase confidence in such models, espe-
cially in cases with limited training data.
One approach to estimate model uncertainty is

to utilize a Bayesian Neural Network (MacKay,
1992). In such networks, a distribution of model
parameters is utilized. The most common tech-
nique utilized is Monte Carlo (MC) dropout
(Kendall and Gal, 2017). During inference, MC
dropout will run multiple forward passes of the
network, dropping random weights for each pass.
If the uncertainty is low, the distribution of re-
sultant predictions should be tightly bounded. A
broad distribution, however, indicates greater un-
certainty of the model. If leveraged properly, mod-
els can be made self-aware of their limitations
by identifying situations with high uncertainty. In
such high risk situations, a handover to an RCC
operator should be conducted in a timely and
effective manner, as the situation is outside of the
operational envelope of the AI-based system.

6. Conclusion

The integration of AI-based functions into au-
tonomous ship systems provides many challenges
to approval processes. Performance can not be
guaranteed in all possible situations, as AI models
may perform in a sub-optimal manner in unfore-
seen situations. As such, this study found that
AI should be utilized in a constrained domain,
where the most relevant functions relate to ob-
ject detection and classification. The study further
suggests that humans can be utilized to aid in the
approval process of such systems, by taking con-
trol in high-risk situations. Such situations may
include complex navigation, or instances in which
the uncertainty of an AI-based SAS is high. In
this manner, AI models can be self-aware of their
limitations, and allow for a safe handover to hu-
man operators when necessary. To facilitate such
functions, recent developments within explainable
and trustworthy AI may provide a solution, and
it is recommended that approval processes take
these into consideration. Nonetheless, such pro-
cesses should involve extensive testing to ensure
the robustness of AI-models to identify their lim-
itations and facilitate a safe handover to a human
operator.
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